Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.

blue CRY2/CIB1 S. cerevisiae
Biotechnol Bioeng, 2 Dec 2019 DOI: 10.1002/bit.27234 Link to full text
Abstract: Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light-intensity and duty-cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This work allows for rapid generation and prototyping of optogenetic circuits to control gene expression in Saccharomyces cerevisiae. This article is protected by copyright. All rights reserved.
2.

Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.

blue CRY2/CIB1 S. cerevisiae
Integr Biol (Camb), 30 Jan 2014 DOI: 10.1039/c3ib40102b Link to full text
Abstract: Perturbations in the concentration of a specific protein are often used to study and control biological networks. The ability to "dial-in" and programmatically control the concentration of a desired protein in cultures of cells would be transformative for applications in research and biotechnology. We developed a culturing apparatus and feedback control scheme which, in combination with an optogenetic system, allows us to generate defined perturbations in the intracellular concentration of a specific protein in microbial cell culture. As light can be easily added and removed, we can control protein concentration in culture more dynamically than would be possible with long-lived chemical inducers. Control of protein concentration is achieved by sampling individual cells from the culture apparatus, imaging and quantifying protein concentration, and adjusting the inducing light appropriately. The culturing apparatus can be operated as a chemostat, allowing us to precisely control microbial growth and providing cell material for downstream assays. We illustrate the potential for this technology by generating fixed and time-varying concentrations of a specific protein in continuous steady-state cultures of the model organism Saccharomyces cerevisiae. We anticipate that this technology will allow for quantitative studies of biological networks as well as external tuning of synthetic gene circuits and bioprocesses.
Submit a new publication to our database